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From PlayStation to Supercomputer for $50,000
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As perhaps the clearest evidence yet of the computing power of E E-meL

sophisticated but inexpensive video-game consoles, the National SEND TO PHONE
Center for Supercomputing Applications at the University of Illinois S PRINT

at Urbana-Champaign has assembled a supercomputer from an army

of Sony PlayStation 2's.

The resulting system, with components purchased at retail prices, cost a little more than
$50,000. The center's researchers believe the system may be capable of a half trillion
operations a second, well within the definition of supercomputer, although it may not rank
among the world's 500 fastest supercomputers.

Perhaps the most striking aspect of the project, which uses the open source Linux
operating system, is that the only hardware engineering involved was placing 70 of the
individual game machines in a rack and plugging them together with a high-speed
Hewlett-Packard network switch. The center's scientists bought 100 machines, but are
holding 30 in reserve, possibly for high-resclution display application.
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@ GPUs today have 10s of cores (soon, 100s !)
o Have huge data bandwidth (100s of GB/s)
@ Force a SIMD-style mode of computation
@ HPC on the cheap !
However,
@ GPU models constantly changing
@ Almost no algorithmic work on GPUs
@ Disconnect between programming model and execution model

No proofs!
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Von Neumann

(intel/

Core™i7

Coined by John Backus
Has always been a problem (regardless of technology)

GPU design is an attempt to get around it
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e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams
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Fragment shader operations

@ Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

@ (limited) texture memory for local storage

@ Each pixel processor could do a simple reduce (add, blend)

e Computation initiated by “rendering call” from host machine.

@ All computation resides on GPU from start of the vertex pipeline

e Computation proceeds in passes: output could be rendered or
stored in memory for next pass.
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Voronoi Diagrams

Voronoi diagram is lower envelope of collection of distance
functions
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GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}
color(x,y) = color(p;)

end if

@ Rendering engine is the mapper
e Gathering happens automatically, with fixed key (x,y)
@ Fragment processors implement reduce
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Simple GPU Matrix Multiplication

C=A-B

Cij = ) AuByj
k

B fori=1...kdo
Clx,y] = Clx,y] +
/ Ali, k] * Bk, f]
end for
AC— ]

e GPU loops have to be unrolled

e This works only if k is small
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GPU Matrix Multiplication II

Pass 2

ACEN

Multiple passes increase number of memory access, but help with
caching

Each "field” is actually four values

Can get a factor 4 speedup with careful partitioning of matrix

e More complicated methods needed for sparse multiplication
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Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough

@ Need SIMD structures (find repeated instruction patterns)

@ External memory methods manage I/O bottlenecks but don’t
exploit compute power.

@ Plan: Use sorting networks:

e Many simple (and local) compute elements
e High-throughput and synchronous
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Bitonic sort requires log? 1 layers, /2 comparators/layer



GPU Bitonic Sorting

ag O— —o
a3 o— —o
a; o— —o
ay — —o




GPU Bitonic Sorting

ag o— —o
a3 o— —o
a; o— —o
ay — —o

Texture



GPU Bitonic Sorting

ao

Pt
bl

P T
bl

az

e Fill 2D array with values

X -
|

Texture



GPU Bitonic Sorting

ap o— o Texture

a3 o] —o ::
o————©

ar @ © 0 1

ap o— —o

e Fill 2D array with values

e (for each pass) construct quadrilateral with lookup
values



GPU Bitonic Sorting

ap o— o Texture

a3 o] —o ::
o————©

M ° © 0 1

ap ©— —o

e Fill 2D array with values
e (for each pass) construct quadrilateral with lookup
values

e Texture hardware locates lookup values, and fragment
program does comparisons



GPU Bitonic Sorting

ap o— o Texture
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e Fill 2D array with values

e (for each pass) construct quadrilateral with lookup
values

e Texture hardware locates lookup values, and fragment
program does comparisons

e log? 1 passes used to complete the computation
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This Lecture

@ Brief history of GPU model
e Simple GPU SIMD model

o Examples: Voronoi diagrams, matrix multiplication and sorting



Next Lecture

@ More simple GPU examples

@ Toy example of algorithmic view: “GPU as streaming processor”
@ The CUDA model for modern GPUs

@ “Hello world” example: matrix multiplication in CUDA



Questions?
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