GPU Algorithms I
The Early Years

MADALGO Summer School on Algorithms for Modern Parallel
and Distributed Models

Suresh Venkatasubramanian
University of Utah

Motivation

!

& \\R/.//\ _'____,\\\

Nearest Site Maximally Clear Path

Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware [SIGGRAPH 1999]

Motivation

Ehe New Jork Eimes Business Day

Technology

WORLD US. NJY./REGION BUSINESS TECHNOLOGY SCIENCE | HEALTH SPORTS OPINION

From PlayStation to Supercomputer for $50,000

n m

> May 26, 2003

As perhaps the clearest evidence yet of the computing power of E E-meL

sophisticated but inexpensive video-game consoles, the National SEND TO PHONE
Center for Supercomputing Applications at the University of Illinois S PRINT

at Urbana-Champaign has assembled a supercomputer from an army

of Sony PlayStation 2's.

The resulting system, with components purchased at retail prices, cost a little more than
$50,000. The center's researchers believe the system may be capable of a half trillion
operations a second, well within the definition of supercomputer, although it may not rank
among the world's 500 fastest supercomputers.

Perhaps the most striking aspect of the project, which uses the open source Linux
operating system, is that the only hardware engineering involved was placing 70 of the
individual game machines in a rack and plugging them together with a high-speed
Hewlett-Packard network switch. The center's scientists bought 100 machines, but are
holding 30 in reserve, possibly for high-resclution display application.

Animusic Demo

Overview

@ GPUs today have 10s of cores (soon, 100s !)
o Have huge data bandwidth (100s of GB/s)
@ Force a SIMD-style mode of computation
@ HPC on the cheap !

However,
@ GPU models constantly changing
@ Almost no algorithmic work on GPUs
@ Disconnect between programming model and execution model

Overview

@ GPUs today have 10s of cores (soon, 100s !)
o Have huge data bandwidth (100s of GB/s)
@ Force a SIMD-style mode of computation
@ HPC on the cheap !
However,
@ GPU models constantly changing
@ Almost no algorithmic work on GPUs
@ Disconnect between programming model and execution model

No proofs!

Outline

Programmable
pipeline

l
1999 2006

Outline

Programmable
pipeline

l
1999 2006

sorting

Outline

Programmable
pipeline

l
1999 2006

sorting
matrices

Outline

Programmable
pipeline

l
1999 2006

sorting geometry
matrices

A streaming model

Outline

Programmable CUDA
pipeline
---------- I)
1999 2006
sorting geometry
matrices

A streaming model

Outline

Programmable CUDA
pipeline
—————————— | | >
1999 2006
sorting geometry sorting graphs
matrices matrices

A streaming model

This Lecture

Programmable
pipeline

l
1999 2006

sorting
matrices

The von Neumann Bottleneck

The von Neumann Bottleneck

Von Neumann

: “M Bottleneck -

Core™i7

Coined by John Backus

The von Neumann Bottleneck

Von Neumann

(intel/

Core™i7

Coined by John Backus

Has always been a problem (regardless of technology)

The von Neumann Bottleneck

Von Neumann

(intel/

Core™i7

Coined by John Backus
Has always been a problem (regardless of technology)

GPU design is an attempt to get around it

Addressing the Bottleneck

VIR

YA AV VA AV AV

VIR

YA AV VA AV AV

VIR

YA AV VA AV AV

e Systolic arrays move data between a grid of processing
elements.

Addressing the Bottleneck

(rrri LIl

+ X

(rrri LIl

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

Addressing the Bottleneck

LD A, 5
IADD A, B
LD C, 10

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams

Addressing the Bottleneck

LD A, 5 D
IADD A, B

LD C, 10 D
[]

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams

Addressing the Bottleneck

[Je—1,...3,...,6,...,7
LD A, 5

IADD A, B
b 6. 10 [Je—21,...,9,...,4,...,1

[]*+— 101,...,17,...,6,...,2

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams

Addressing the Bottleneck

Instructions

Data

Flynn’s taxonomy

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams

Addressing the Bottleneck

Instructions
SISD MISD
Data
SIMD MIMD

Flynn’s taxonomy

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams

Addressing the Bottleneck

Instructions
SISD MISD
Data
SIMD MIMD

Flynn’s taxonomy

e Systolic arrays move data between a grid of processing
elements.

e Vector processors operate on multiple words at a time

e SIMD processors have a fixed program that runs on
different streams

GPU Basics

The GPU Pipeline

The GPU Pipeline

o Geometry
transforma-
tions

The GPU Pipeline

o Geometry
transforma-
tions

Lighting

The GPU Pipeline

-

o Geometry
transforma-
tions

Lighting

Clipping

The GPU Pipeline

-

Lighting Clipping

o Geometry
transforma-
tions

Vertex pipeline

The GPU Pipeline

-

Lighting Clipping

o Geometry
transforma-
tions
Vertex pipeline

Texturing

The GPU Pipeline

= ()=

i Geometry L Cliomin
transforma- Lighting ppmg
tions

Vertex pipeline

ED?DD <:’ <;

Fragments Texturing

The GPU Pipeline

= ()=

i Geometry L Cliomin
transforma- Lighting ppmg
tions

Vertex pipeline

Depth/Stencil ~ Fragments Texturing

The GPU Pipeline

= ()=

i Geometry L Cliomin
transforma- Lighting ppmg
tions

Vertex pipeline

Depth/Stencil ~ Fragments Texturing

The GPU Pipeline

= (i) =

°
(] Geometry C Clippin
o transforma- Lighting pping
tions
Vertex pipeline
]
o 0
= s =)\ =
m O
B @
Depth/Stencil ~ Fragments Texturing

Fragment pipeline

The GPU Pipeline

= (i) =

(] Geometry C Clippin
o transforma- Lighting pping
tions
Vertex pipeline

= 22 @P =

Depth/Stencil ~ Fragments Texturing
Fragment pipeline

Fragment shader operations

o Every pixel acts like an SIMD processor

Fragment shader operations

o Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

Fragment shader operations

o Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

Fragment shader operations

o Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

o (limited) texture memory for local storage

Fragment shader operations

@ Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

@ (limited) texture memory for local storage
@ Each pixel processor could do a simple reduce (add, blend)

Fragment shader operations

@ Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

@ (limited) texture memory for local storage
@ Each pixel processor could do a simple reduce (add, blend)
e Computation initiated by “rendering call” from host machine.

Fragment shader operations

@ Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

@ (limited) texture memory for local storage

@ Each pixel processor could do a simple reduce (add, blend)

e Computation initiated by “rendering call” from host machine.

@ All computation resides on GPU from start of the vertex pipeline

Fragment shader operations

@ Every pixel acts like an SIMD processor
e actually, some fixed number are processed in parallel

@ Fragment processor could perform simple straight-line operations
and conditionals (no looping)

@ (limited) texture memory for local storage

@ Each pixel processor could do a simple reduce (add, blend)

e Computation initiated by “rendering call” from host machine.

@ All computation resides on GPU from start of the vertex pipeline

e Computation proceeds in passes: output could be rendered or
stored in memory for next pass.

Simple GPU Algorithms

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi Diagrams

Voronoi diagram is lower envelope of collection of distance
functions

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles
e Use many triangles to approximate smooth cone

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0
if depth(p;) < min then

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0
if depth(p;) < min then
{GPU Z-test}

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0
if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}
color(x,y) = color(p;)

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}
color(x,y) = color(p;)

end if

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}
color(x,y) = color(p;)

end if

@ Rendering engine is the mapper

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}
color(x,y) = color(p;)

end if

@ Rendering engine is the mapper
e Gathering happens automatically, with fixed key (x,y)

GPU Voronoi Diagrams

@ For each point, render a cone of colored triangles

e Use many triangles to approximate smooth cone
o Use shading to encode distance as color value

e Fragment processor at (x,y) receives stream of pixels p1,pa, . . -

min < 0

if depth(p;) < min then
{GPU Z-test}
min = depth(p;) {GPU blending operation}
color(x,y) = color(p;)

end if

@ Rendering engine is the mapper
e Gathering happens automatically, with fixed key (x,y)
@ Fragment processors implement reduce

Simple GPU Matrix Multiplication

C=A-B
Cij =), AiByj
k

Simple GPU Matrix Multiplication

C=A-B
Cij =) AByj
k

il

ACC

Simple GPU Matrix Multiplication

C=A-B
Cij =) AByj
k

fori=1...kdo
Clx,y] = Clx,y] H

/ Ali, k] * Bk, j]
end for

ACC

Simple GPU Matrix Multiplication

C=A-B

Cij =) AuByj
k

B fori=1...kdo
Clx,y] = Clx,y] H
/ Ali, k] * Bk, f]
end for
AC—]

e GPU loops have to be unrolled

Simple GPU Matrix Multiplication

C=A-B

Cij =) AuByj
k

B fori=1...kdo
Clx,y] = Clx,y] +
/ Ali, k] * Bk, f]
end for
AC—]

e GPU loops have to be unrolled

e This works only if k is small

~ GPU Matrix Multiplication II

Al

ACC—]

GPU Matrix Multiplication II

Pass 1
’ H

AN]

GPU Matrix Multiplication II

Pass 2

ACEN

e Multiple passes increase number of memory access, but help with
caching

GPU Matrix Multiplication II

Pass 2

ACEN

e Multiple passes increase number of memory access, but help with
caching

e Each “field” is actually four values

GPU Matrix Multiplication II

Pass 2

ACEN

e Multiple passes increase number of memory access, but help with
caching

e Each “field” is actually four values

o Can get a factor 4 speedup with careful partitioning of matrix

GPU Matrix Multiplication II

Pass 2

ACEN

Multiple passes increase number of memory access, but help with
caching

Each "field” is actually four values

Can get a factor 4 speedup with careful partitioning of matrix

e More complicated methods needed for sparse multiplication

Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough

Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough

@ Need SIMD structures (find repeated instruction patterns)

Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough
@ Need SIMD structures (find repeated instruction patterns)

@ External memory methods manage I/O bottlenecks but don’t
exploit compute power.

Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough
@ Need SIMD structures (find repeated instruction patterns)

@ External memory methods manage I/O bottlenecks but don’t
exploit compute power.

@ Plan: Use sorting networks:

Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough
@ Need SIMD structures (find repeated instruction patterns)

@ External memory methods manage I/O bottlenecks but don’t
exploit compute power.
@ Plan: Use sorting networks:
e Many simple (and local) compute elements

Sorting on the GPU

Can we sort on the GPU ?

o Compute parallelism is not enough

@ Need SIMD structures (find repeated instruction patterns)

@ External memory methods manage I/O bottlenecks but don’t
exploit compute power.

@ Plan: Use sorting networks:

e Many simple (and local) compute elements
e High-throughput and synchronous

Bitonic Sorting

Pt

Ll

Bitonic Sorting

| min(a,b)

Pt

(SRS

—o max(a, b)

Bitonic Sorting

SR

Pt

| min(a,b)

—o max(a, b)

1] | =)

|

:D__

Bitonic Sorting

SR

Pt

| min(a,b)

—o max(a, b)

1] | =)

5

Bitonic Sorting

| min(a,b)

Pt

SR

—o max(a, b)

1=

11
=
=] [

Bitonic Sorting

a o] | min(a,b)
b o— —o max(a, b)
3— 3]
7 — 4 —
4— 7
8— L —— 8-
6— 2 :] I—
2— 1
1— 6—
5— { —— 5 |

Bitonic Sorting

| min(a,b)

Pt

SR

—o max(a, b)

a-mliii

11
1| | =)
L
| |

Bitonic Sorting

a o] | min(a,b)

b o— —o max(a, b)
3—] B 3
7 — :l: 4
4— 2|
8 — L | 1
6—] 8
2— :l: 7
1— 5—
5— L] L 6

Bitonic Sorting

SR

Pt

| min(a,b)

—o max(a, b)

1] | =)

4

6

Bitonic Sorting

| min(a,b)

Pt

SR

—o max(a, b)

8— L i —4
6—] :ll—— —5

Bitonic sort requires log? 1 layers, /2 comparators/layer

GPU Bitonic Sorting

ag O— —o
a3 o— —o
a; o— —o
ay — —o

GPU Bitonic Sorting

ag o— —o
a3 o— —o
a; o— —o
ay — —o

Texture

GPU Bitonic Sorting

ao

Pt
bl

P T
bl

az

e Fill 2D array with values

X -
|

Texture

GPU Bitonic Sorting

ap o— o Texture

a3 o] —o ::
o————©

ar @ © 0 1

ap o— —o

e Fill 2D array with values

e (for each pass) construct quadrilateral with lookup
values

GPU Bitonic Sorting

ap o— o Texture

a3 o] —o ::
o————©

M ° © 0 1

ap ©— —o

e Fill 2D array with values
e (for each pass) construct quadrilateral with lookup
values

e Texture hardware locates lookup values, and fragment
program does comparisons

GPU Bitonic Sorting

ap o— o Texture

a3 o] —o ::
o————©

M ° © 0 1

ap ©— —o

e Fill 2D array with values

e (for each pass) construct quadrilateral with lookup
values

e Texture hardware locates lookup values, and fragment
program does comparisons

e log? 1 passes used to complete the computation

Review

This Lecture

@ Brief history of GPU model
e Simple GPU SIMD model

o Examples: Voronoi diagrams, matrix multiplication and sorting

Next Lecture

@ More simple GPU examples

@ Toy example of algorithmic view: “GPU as streaming processor”
@ The CUDA model for modern GPUs

@ “Hello world” example: matrix multiplication in CUDA

Questions?

	Basics
	Voronoi Diagrams
	Matrix Multiplication
	Sorting
	Questions

