
GPU Algorithms I
The Early Years

MADALGO Summer School on Algorithms for Modern Parallel

and Distributed Models

Suresh Venkatasubramanian
University of Utah



Motivation

Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware [SIGGRAPH 1999]



Motivation



Animusic Demo



Overview

GPUs today have 10s of cores (soon, 100s !)
Have huge data bandwidth (100s of GB/s)
Force a SIMD-style mode of computation
HPC on the cheap !

However,
GPU models constantly changing
Almost no algorithmic work on GPUs
Disconnect between programming model and execution model

No proofs!



Overview

GPUs today have 10s of cores (soon, 100s !)
Have huge data bandwidth (100s of GB/s)
Force a SIMD-style mode of computation
HPC on the cheap !

However,
GPU models constantly changing
Almost no algorithmic work on GPUs
Disconnect between programming model and execution model

No proofs!



Outline

1999 2006

Programmable
pipeline

1999 2006

Programmable
pipeline

sorting

1999 2006

Programmable
pipeline

sorting
matrices

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



Outline

1999 2006

Programmable
pipeline

1999 2006

Programmable
pipeline

sorting

1999 2006

Programmable
pipeline

sorting
matrices

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



Outline

1999 2006

Programmable
pipeline

1999 2006

Programmable
pipeline

sorting

1999 2006

Programmable
pipeline

sorting
matrices

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



Outline

1999 2006

Programmable
pipeline

1999 2006

Programmable
pipeline

sorting

1999 2006

Programmable
pipeline

sorting
matrices

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



Outline

1999 2006

Programmable
pipeline

1999 2006

Programmable
pipeline

sorting

1999 2006

Programmable
pipeline

sorting
matrices

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



Outline

1999 2006

Programmable
pipeline

1999 2006

Programmable
pipeline

sorting

1999 2006

Programmable
pipeline

sorting
matrices

1999 2006

Programmable
pipeline

sorting
matrices

geometry

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



This Lecture

1999 2006

Programmable
pipeline

sorting
matrices



The von Neumann Bottleneck

Von Neumann
Bottleneck

Coined by John Backus

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

GPU design is an attempt to get around it



The von Neumann Bottleneck

Von Neumann
Bottleneck

Coined by John Backus

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

GPU design is an attempt to get around it



The von Neumann Bottleneck

Von Neumann
Bottleneck

Coined by John Backus

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

GPU design is an attempt to get around it



The von Neumann Bottleneck

Von Neumann
Bottleneck

Coined by John Backus

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

Von Neumann
Bottleneck

Coined by John Backus

Has always been a problem (regardless of technology)

GPU design is an attempt to get around it



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



Addressing the Bottleneck

• Systolic arrays move data between a grid of processing
elements.

• Systolic arrays move data between a grid of processing
elements.

+ ×

• Vector processors operate on multiple words at a time

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

LD A, 5

ADD A, B

LD C, 10

...

1, . . . , 3, . . . , 6, . . . , 7

21, . . . , 9, . . . , 4, . . . , 1

101, . . . , 17, . . . , 6, . . . , 2

• SIMD processors have a fixed program that runs on
different streams

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy

• Systolic arrays move data between a grid of processing
elements.

• Vector processors operate on multiple words at a time

• SIMD processors have a fixed program that runs on
different streams

Data

Instructions

SISD MISD

MIMDSIMD

Flynn’s taxonomy



GPU Basics



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

Lighting

Geometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

Lighting

Geometry
transforma-
tions

Lighting Clipping

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting Clipping

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



The GPU Pipeline

Geometry
transforma-
tions

Geometry
transforma-
tions

LightingGeometry
transforma-
tions

Lighting ClippingGeometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

Texturing

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragments

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline

Geometry
transforma-
tions

Lighting Clipping

Vertex pipeline

TexturingFragmentsDepth/Stencil

Fragment pipeline



Fragment shader operations

Every pixel acts like an SIMD processor

actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)

(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage

Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)

Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.

All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline

Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Fragment shader operations

Every pixel acts like an SIMD processor
actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.



Simple GPU Algorithms



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



Voronoi Diagrams

6
5

10

6
5

10

Voronoi diagram is lower envelope of collection of distance
functions



GPU Voronoi Diagrams

For each point, render a cone of colored triangles

Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone

Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0

if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}

min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}

color(x, y) = color(pi)
end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper

Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)

Fragment processors implement reduce



GPU Voronoi Diagrams

For each point, render a cone of colored triangles
Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce



Simple GPU Matrix Multiplication

C = A · B
Cij = ∑

k
AikBkj

C = A · B
Cij = ∑

k
AikBkj

A

B

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

• This works only if k is small



Simple GPU Matrix Multiplication

C = A · B
Cij = ∑

k
AikBkj

C = A · B
Cij = ∑

k
AikBkj

A

B

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

• This works only if k is small



Simple GPU Matrix Multiplication

C = A · B
Cij = ∑

k
AikBkj

C = A · B
Cij = ∑

k
AikBkj

A

B

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

• This works only if k is small



Simple GPU Matrix Multiplication

C = A · B
Cij = ∑

k
AikBkj

C = A · B
Cij = ∑

k
AikBkj

A

B

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

• This works only if k is small



Simple GPU Matrix Multiplication

C = A · B
Cij = ∑

k
AikBkj

C = A · B
Cij = ∑

k
AikBkj

A

B

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

C = A · B
Cij = ∑

k
AikBkj

A

B for i = 1 . . . k do
C[x, y] = C[x, y] +
A[i, k] ∗ B[k, j]

end for

• GPU loops have to be unrolled

• This works only if k is small



GPU Matrix Multiplication II

A

B

A

B
Pass 1

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

• More complicated methods needed for sparse multiplication



GPU Matrix Multiplication II

A

B

A

B
Pass 1

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

• More complicated methods needed for sparse multiplication



GPU Matrix Multiplication II

A

B

A

B
Pass 1

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

• More complicated methods needed for sparse multiplication



GPU Matrix Multiplication II

A

B

A

B
Pass 1

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

• More complicated methods needed for sparse multiplication



GPU Matrix Multiplication II

A

B

A

B
Pass 1

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

• More complicated methods needed for sparse multiplication



GPU Matrix Multiplication II

A

B

A

B
Pass 1

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

A

B
Pass 2

• Multiple passes increase number of memory access, but help with
caching

x
y

z
u

• Each ”field” is actually four values

• Can get a factor 4 speedup with careful partitioning of matrix

• More complicated methods needed for sparse multiplication



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough

Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)

External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.

Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements

High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texture

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texture

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



Review



This Lecture

Brief history of GPU model
Simple GPU SIMD model
Examples: Voronoi diagrams, matrix multiplication and sorting



Next Lecture

More simple GPU examples
Toy example of algorithmic view: “GPU as streaming processor”
The CUDA model for modern GPUs
“Hello world” example: matrix multiplication in CUDA



Questions?


	Basics
	Voronoi Diagrams
	Matrix Multiplication
	Sorting
	Questions

